
Int J Theor Phys (2010) 49: 1288–1301
DOI 10.1007/s10773-010-0310-9

Unified Field Theoretical Models from Generalized
Affine Geometries

Diego Julio Cirilo-Lombardo

Received: 7 March 2010 / Accepted: 10 March 2010 / Published online: 24 March 2010
© Springer Science+Business Media, LLC 2010

Abstract New model of a non-dualistic Unified Theory is analyzed. This model is based in
a manifold equipped with an underlying hypercomplex structure and zero non-metricity, that
makes it geometricaly and physically consistent. Wormhole solution from this new model
is presented and is explicitly compared with our previous one coming from the Einstein-
Non Abelian Born-Infeld theory (in Class. Quantum Gravity 22:4987–5004, 2005). We find
that the torsion plays in this unified theory similar role that Yang Mills type strength field
coming from the non-Abelian Born-Infeld energy momentum tensor. The meaning of the
Yang-Mills ansatz based in the alignment of the isospin with the frame geometry of the
spacetime is discussed.

Keywords Unified theories · Gravitation · Non-Riemmanian geometry

1 Introduction and Summary

From long time ago in the history of the physics the formulation of the gravitational theory
together with the other interactions was one of the main points focused by the researcher,and
this fact is not extrange: our experience has shown that formerly unrelated parts of physics
could be fused into one single conceptual formalism by a new theoretical perspective: elec-
tricity and magnetism, optics and electromagnetism, thermodynamics and statistical me-
chanics, inertial and gravitational forces. In the second half of the 20th century, the elec-
tromagnetic and weak nuclear forces have been bound together as an electroweak force;
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a powerful scheme was devised to also include the strong interaction (chromodynamics),
and led to the standard model of elementary particle physics. Unification with the fourth
fundamental interaction, gravitation, is in the focus of much present research in classical
general relativity, supergravity, superstring, and supermembrane theory but has not yet met
with success [22]. The question is what we miss in this task.

As is well known, spin-angular momentum and mass appear in very symmetric way
in non-gravitational physics. Moreover, the labels of the irreducible representations of the
Poincare group [1] are precisely the mass and the spin. Then, in view of this fact, one are able
to note that the Einstein theory is incomplete because only energy-momentum and not spin-
angular momentum is given dynamical importance for the structure (geometrical properties)
of the space-time.

The Einstein theory is deduced assuming a priori the Riemannian structure of the space-
time, that is without torsion. Arguments have been given that the spacetime should exhibit
both curvature and torsion in the presence of the matter [2–6].

The coupling of spin density to torsion of spacetime is natural when the R4 geometry
is extended to U4, from a Riemannian to Riemannian-Cartan geometry [2–4, 6]. For in-
stance, the Einstein-Cartan theory is the simplest generalization of the Einstein’s theory
obtained in the U4 geometry. But, however, in the usual Einstein-Cartan geometry [2–4, 6]
the spin-geometry coupling and the energy-geometry coupling still appears. The Christoffel
connection depends upon the metric and its derivatives, but the torsion terms are regarded as
independent fields. Then, the direct consequence that we have upon variation with respect
to the metric and the contorsion, second order differential equations for gμν and algebraic
equations for Tμνρ. This fact is unnatural and its meaning is obscure, indeed that we can
eliminate the torsion of the field equations and obtain an Einstein theory with a modificated
matter field Lagrangian. Thus, the theories involved are dynamically equivalent [7].

At this stage one suspect that a more deep question is involved in the same root of the
problem: spin, energy-matter and spacetime structure. The theories described above, besides
the obvious difference of the spin-torsion coupling, is that both Einstein and Einstein-Cartan
are dualistic theories: we must to include the fields (matter) by mean the addition of a (non-
geometric) Lagrangian to the gravitational (geometrical) one. Einstein himself pointed out
this fact as “undesirable” and only has the status of some bridge towards the final unified
theory. It seems reasonable, for instant, to continue these efforts in order to obtain the correct
way to solve the important problem of the natural unification of the natural world (matter,
energy, spin).

In this report we present a new model of a non-dualistic Unified Theory. This model
is absolutely consistent from the mathematical and geometrical point of view and is based
in a manifold equipped with an underlying hypercomplex structure and zero non-metricity,
that lead the important fact that the Torsion of the spacetime structure turns to be totally
antisymmetric: this is the only important case that this type of affine geometrical frameworks
are compatible with the physical “equivalence principle”. Also we shown that interesting
wormhole solutions, similarly to the previous reference with the non Abelian Born-Infeld
theory, can be obtained in this theory. The solution of this model is explicitly compared with
our previous one and we find that the torsion plays in this unified theory similar role that
Yang Mills type strength field coming from the non-Abelian Born-Infeld energy momentum
tensor of our previous reference. The another important result is that the meaning of the
Hosoya-Ogura ansatz (namely, the alignment of the isospin with the frame geometry of the
spacetime) is completely elucidated.
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2 The Spacetime Manifold and the Geometrical Action

The starting point is an hypercomplex construction of the (metric compatible) space-time
manifold [8]. The main ingredients for this construction are:

The metric

gμν = gμν = gνμ ∈ R with ∇g = 0 (1)

Also, we assume that the potential torsion exists and arises in a natural form consider-
ing that the geometry is reductive (the ∇ for the covariant derivative with respect the full
connection �). This potential torsion has the following properties

fμν = f μν = −fνμ ∈ HC

∇[ρfμν] = Tμνρ

= εμνρσ hσ

(2)

where the last equality coming from the full antisymmetry of the Torsion field. Immediately
we can see, as a consequence of the above statements, the following

(i) the torsion is the dual of an axial vector hσ ;
(ii) from (i), the existence in the spacetime of a completely antisymmetric tensor covariantly

constant εμνρσ (∇ε = 0).

Notice that, as we will show in detail elsewhere [9], the choice for the real nature of the
metric and the pure hypercomplex potential tensor coming from the Hermitian nature of the
theory: if we assume (1), the condition (2) arises automatically.

The second important point is to consider [10, 11] the extended curvature

Rab
μν = Rab

μν + �ab
μν (3)

with

Rab
μν = ∂μωab

ν − ∂νω
ab
μ + ωac

μ ωνc
b − ωac

ν ωμc
b

�ab
μν = − (

ea
μeb

ν − ea
ν e

b
μ

)

We assume here ωab
ν a SO(d − 1,1) connection and ea

μ is a vierbein field. The (3) can
be obtained, for example, using the formulation that was pioneering introduced in seminal
works by E. Cartan long time ago [10, 11]. Is well known that in such an formalism the
gravitational field is represented as a connection one form associated with some group which
contains the Lorentz group as subgroup. The typical example is provided by the SO(d,1)

de Sitter gauge theory of gravity. In this specific case, the SO(d,1) the gravitational gauge
field ωAB

μ = −ωBA
μ is broken into the SO(d −1,1) connection ωab

μ and the ωda
μ = ea

μ vierbein
field, with the dimension d fixed. Then, the de Sitter (anti-de Sitter) curvature

Rab
μν = ∂μωAB

ν − ∂νω
AB
μ + ωAC

μ ωνC
B − ωAC

ν ωμC
B (4)

splits in the curvature (3).
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Now we define the following geometrical object

Ra
μ = λ

(
ea

μ + f a
μ

) + Ra
μ

(
Ma

μ ≡ eaνMνμ

)
(5)

The action will contains, as usual, R = det(Ra
μ) as the geometrical object that defines

the dynamics of the theory. The particularly convenient definition of Ra
μ makes easy to

establish the equivalent expression in the spirit of the Unified theories developed time ago
by Eddington, Einstein and Born and Infeld for example:

√
det Ra

μRaν =
√

det
[
λ2

(
gμν + f a

μfaν

) + 2λR(μν) + 2λf a
μR[aν] + Ra

μRaν

]
(6)

where Rμν = R(μν) + R[μν].
The important point to consider in this simple Cartan inspired model is that, although

a cosmological constant λ is required, the expansion of the action in four dimensions lead
automatically the Hilbert-Einstein part when f a

μ = 0. Explicitly (R = gαβRαβ )

S =
∫

d4x(e + f )

{
λ4 + λ3(R + f a

μRμ
a)

+ λ2

2!
[
R2 − RμνRμν + (

f a
μRμ

a

)2 − f μνf ρσ RμρRνσ

]

+ λ

3!
[
R3 − 3RRμνRμν + 2RμαRαβRβ

μ + (
f a

μRμ
a

)3

− 3
(
f a

μRμ
a

)
f μνf ρσ RμρRνσ + 2f μνRμ

αRαβRβ
ν

] + det(Rμν)

}
(7)

3 The Dynamical Equations

Defining

ηab Ra
μRb

ν ≡ Gμν (8)

the variation with respect to the metric gμν is straightforward

δ
√

G

δgαβ
=

√
G

2

(
G−1

)μν
[
λ2

(−gβνgαμ + fβνfαμ

) + 2λfαμR[βν]
]

(9)

In order to compute the variation with respect to f it is useful to remind the structure of the
Riemann tensor [13]

Rμν =

R(μν)
︷ ︸︸ ︷
◦
Rμν − Tμρ

α Tαν
ρ +

R[μν]
︷ ︸︸ ︷
◦∇αTμν

α (10)

where
◦
Rμν and

◦∇α are the Riemann tensor and the covariant derivative computed from the
Christoffel symbol {ρ

μν}. Then, using the last expression (10), we obtain for the f variation

δ
√

G

δfστ

= ∇ρ

(
∂
√

G

∂Tρστ

)

− ∂
√

G

∂fστ

≡ ∇ρT
ρστ − F

στ = 0 (11)
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From above expressions is not difficult to see that the full set of equations involved in our
task are

Rμν = −2λ
(
gμν + fμν

)
(12)

∇ρ

(
∂
√

G

∂Tρστ

)

− ∂
√

G

∂fστ

≡ ∇ρT
ρστ − F

στ = 0 (13)

4 The Dynamical Equations II: Physical and Geometrical Interpretation

The variational equations (in the Palatini’s sense [10, 11, 13]) (12) and (13) above, despite
their simplest and compact form, it is necessary to find what is the deep physical and geo-
metrical meaning inside they.

For expression (13) we have a highly nonlinear dynamical (propagating) equation for
the torsion field, where the variation was performed with respect to their potential fμν and
having a nonlinear term proportional to fμν playing the role of current for the T

ρστ . Then,
the potential two form is associated nonlinearly to the torsion field as his source regarding
similar association between the electromagnetic field and the spin in particle physics.

For the expression (12), firstly is useful to split the equation into the symmetric and the
antisymmetric parts using (10)

R(μν) = ◦
Rμν − Tμρ

α Tαν
ρ = −2λgμν (14)

R[μν] = ◦∇αT
α

μν = −2λfμν

= ∇αT
α

μν (15)

the last equality coming from (2). The symmetric part (14) can be written in a “GR” sugges-
tive fashion

◦
Rμν = −2λgμν + Tμρ

α Tαν
ρ (16)

we can advertise that the equation has the aspect of the Einstein equations with the cosmo-
logical term modified by the torsion symmetric term Tμρ

α Tαν
ρ . This can be interpreted by

the energy of the gravitational field itself.
The second antisymmetric part (15) is more involved. In order to understand it, will be

necessary use the language of differential forms to rewrite they that, beside their symbolic
and conceptual simplicity, permit us to check consistency and covariance step by step.

∇αT
α

μν = −2λfμν

d∗T = −2λ ∗f
(17)

now, using (2) (T = ∗h)

dh = −2λ ∗f ⇒ ∗f = − 1

2λ
dh (18)

in more familiar form

∇μhν − ∇νhμ = −2λ ∗fμν (19)
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then follows using (2) again: T = df = ∗h and (17)

d ∗f = 0 (20)

and fundamentally

df = − 1

2λ
d∗dh = T = ∗h (21)

d∗dh = −2λ ∗h (22)

that we can recognize the Laplace-de Rham operator that help us to write the wave covariant
equation

[(dδ + δd) + 2λ] ∗h = 0

(� + 2λ) ∗h = 0
(23)

If we start with the potential is not difficult to see that equivalent equation can be find

(� + 2λ) ∗f = 0 (24)

Notice that (23) coming from (18) and is consequence of the Tf h-relation (T = df = ∗h)

but (24) comes directly from (17). The geometric interplay is1

T∫

↙↗
d

↘
(−1)d+1∗

∗↖

f −1∗
d/2λ

←−−−−−−−−→−2λ
∫ ∗

h

(25)

And finally, the explicit computation of the determinant in (d = 4) of expression (8)
that will help us in order to compare the unitarian model introduced here (in the sense of
Eddington [14, 15]) with the dualistic non Abelian Born-Infeld model of [16], takes the
familiar form [16]

S = b2

4π

∫ √−gdx4

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

≡R

︷ ︸︸ ︷√

γ 4 − γ 2

2
G

2 − γ

3
G

3 + 1

8

(
G

2
)2 − 1

4
G

4

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(26)

Gμν ≡ [
λ2

(
gμν + f a

μfaν

) + 2λR(μν) + 2λf a
μR[aν] + Ra

μRaν

]
(27)

Gν
ν ≡ [

λ2
(
d + fμνf

μν
) + 2λ (RS + RA) + (

R2
S + R2

A

)]
(28)

1In this paragraph we consider an even number of dimensions to avoid the sign ambiguities with the action
of the Hodge operator (*).
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where

RS ≡ gμνR(μν) RA ≡ f μνR[μν] γ ≡ Gν
ν

d
Gμν ≡ Gμν − gμν

4
Gν

ν

G
ν

ρG
ρ

ν ≡ G
2

G
ν

λG
λ

ρG
ρ

ν ≡ G
3

(
G

ν

ρG
ρ

ν

)2 ≡
(
G

2
)2

G
ν

μG
μ

λ G
λ

ρG
ρ

ν ≡ G
4

(29)

and the relevant quantities involved into the dynamical equations (12, 13) are

F
μν ≡ ∂LG

∂fμν

= λ2Nμν(δσ
μ f ρ

ν + δσ
ν f ρ

μ)

2R
(30)

T
εγ δ ≡ ∂LG

∂Tεγ δ

= NμνM
ε·γ ·δ
·α·β (2λδα

μδβ
ν + Rα

νδ
β

μ + Rα
μδβ

ν)

2R
(31)

Nμν = g

[
−γ 2Gμν − γ (G2)μν + (G2)μ

μGμν

2
− (G3)μν + 4γ 3gμν

d

− γ (G2)μ
μgμν

d
− (G3)μ

μgμν

3d

]
(32)

M
ε·γ ·δ
·α·β = (

δε
μT δγ

ν + Tμ
δεδγ

ν

)
(33)

5 Exact Solutions in the New UFT Theory: The Wormhole-Instanton

The main motivation in this section is clear: we must equip our “theoretical arena” by study-
ing wormhole solutions beyond to Einstein equations coupled to possible matter fields. We
know the that many problems appear in the conventional “dualistic” approach even at the
classical level, that make that the “dream” of a quantum formulation of the gravity that per-
mit its interaction with other fields becomes practically impossible. Then, let us construct
wormhole solutions in the viewpoint of the UFT model introduced here. The action in four
dimensions is given by

S = − 1

16πG

∫
d4x

√
det

∣
∣Gμν

∣
∣ (34)

R ≡
√

γ 4 − γ 2

2
G

2 − γ

3
G

3 + 1

8

(
G

2
)2 − 1

4
G

4
(35)

Scalar curvature R and the torsion 2-form field T a
μν with a SU(2)-Yang-Mills structure are

defined in terms of the affine connection �λ
μν and the SU(2) potential torsion f a

μ by

R = gμνRμν Rμν = Rλ
μλν

Rλ
μλν = ∂ν�

λ
μρ − ∂ρ�

λ
μν + · · ·

T a
μν = ∂μf a

ν − ∂νf
a
μ + εa

bcf
b
μf c

ν

(36)

G and � are the Newton gravitational constant and the cosmological constant respectively.
Notice the important fact that from the last equation for the Torsion 2-form, the potential
f a

μ must be proportional with the antisymmetric part of the affine connection �λ
μν as in
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the Strauss-Einstein UFT. As in the case of Einstein-Yang-Mills systems, for our new UFT
model it can be interpreted as a prototype of gauge theories interacting with gravity (e.g.
QCD, GUTs, etc.). Upon varying the action (31), we obtain the gravitational “Einstein-
Eddington-like” equation

Rμν = −2λ
(
gμν + fμν

)
(37)

and the field equation for the torsion two form in differential form

d∗
T

a + 1

2
εabc

(
fb ∧ ∗

Tc − ∗
Tb ∧ fc

) = F
a (38)

where we define as usual

T
a
bc ≡ ∂LNBI

∂Ta
bc

F
a
bc ≡ ∂LNBI

∂Fa

we are going to seek for a classical solution of (33) and (34) with the following spherically
symmetric ansatz for the metric and gauge connection

ds2 = dτ 2 + a2 (τ )σ i ⊗ σ i ≡ dτ 2 + ei ⊗ ei (39)

here τ is the Euclidean time and the dreibein is defined by ei ≡ a2 (τ )σ i .The gauge connec-
tion is

f a ≡ f a
μdxμ = hσa (40)

for a = 1,2,3 and for a = 0

f 0 ≡ f 0
μdxμ = sσ 0 (41)

this choice for the potential torsion is the most general and consistent from the physical
and mathematical point of view, as we will show soon. The σ i one-form satisfies the SU(2)

Maurer-Cartan structure equation

dσ a + εa
bcσ

b ∧ σ c = 0 (42)

Notice that in the ansatz the frame and isospin indexes are identified as for the case with the
NBI Lagrangian of [16]. The torsion two-form

T γ = 1

2
T γ

μν dxμ ∧ dxν (43)

becomes

T a = df a + 1

2
εa

bcf
b ∧ f c

=
(

−h + 1

2
h2

)
εa

bc σ b ∧ σ c (44)

Notice that f 0 plays no role here because we take simply ds = 0 (the U(1) component of
SU(2), in principle, does not form part of the space spherical symmetry), and the expression
for the torsion is analogous to the non Abelian two form strength field of [16]. Also, it is
important to note that, when we goes from the Lorentzian to Euclidean gravitational regime,
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it → τ and the torsion pass from the field of the Hypercomplex to the Complex numbers,
for invariance reasons (geometrically, multiplication of hypercomplex numbers preserves
the (square) Minkowski norm (x2 − y2) in the same way that multiplication of complex
numbers preserves the (square) Euclidean norm (x2 + y2)). Inserting T a from (44) into the
dynamical equation (38) we obtain

d∗
T

a + 1

2
εabc

(
fb ∧ ∗

Tc − ∗
Tb ∧ fc

) = ∗
F

a

(−2h + h2)(1 − h)dτ ∧ eb ∧ ec = −2λdτ ∧ eb ∧ ec

(45)

where

∗
T

a≡λ
√|g|√

3
hA(−2h + h2)dτ ∧ ea

a2
(46)

∗
F

a = −2λ2√|g|√
3

hA
dτ ∧ eb ∧ ec

a3
(47)

A ≡ λ4
[
(1 + α)2 + α/2

]
(48)

and

α = 1

2

(
s2 + 3h2

)
(49)

from expression (45) we have an algebraic cubic equation for h

(−2h + h2)(1 − h) + 2λ = 0 (50)

We can see that, in contrast with our previous work with a dualistic theory [16], for
h there exist three non trivial solutions depending on the cosmological constant λ. But,
at this preliminary analysis of the problem, only the values of h that make the quantity
(−h + 1

2 h2) ∈ R are relevant for our proposes: due the pure imaginary character of T in
the Euclidean framework and mainly to compare with the NABI wormhole solution of our
previous work (the question of the h ∈ C will be the focus of a further paper [9]). As the
value of h ∈ R is −1 and in 4 spacetime dimensions λ = |1 − d| = 3, then

T a
bc|h1 = 3

2

εa
bc

a2
T a

0c = 0 (51)

Namely, only the magnetic field is non vanishing while the electric field vanishes. An analo-
gous feature can be seen in the solution of Giddings and Strominger [17] and in our previous
paper [16]. Substituting the expression for the Torsion two form (51) into the symmetric part
of the variational equation, namely2

R(μν) = ◦
Rμν − Tμρ

α Tαν
ρ = −2λgμν (52)

2In the tetrad:

◦
R00 = −3

ä

a
,

◦
Rab = −

[
ä

a
+ 2

(
ȧ

a

)2
− 2

a2

]
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Fig. 1 Shape of the wormhole solution for values of the Euclidean time and torison τ0 = 1 and
T a

bc = (3/2)εa
bc , respectively

(in the tetrad:
◦
R00 = −3 ä

a
,

◦
Rab = − 1

a
[äa + 2ȧ2 − 2]) we reduce (15) to an ordinary differ-

ential equation for the scale factor a,
[(

ȧ

a

)2

− 1

a2

]

= 2λ

3
− 9

2a4
(53)

Ln[1 + 4a2 + 2
√−9 + 2a2 + 4a4]
2
√

2
= τ − τ0 (54)

Tμρ
α Tαν

ρ = (−h + 1
2h2)2

a4
2δμν

= 9

2a4
δμν (55)

There are 2 values for the scale factor a: max and min respectively, namely

a = ∓e−√
2(τ−τ0)

√
37 − 2e2

√
2(τ−τ0) + e4

√
2(τ−τ0)

2
√

2
(56)

Expression (56) for the scale factor a is described in the Fig. 1 for the real value of h. As
is easily seen from (56), the scale factor has an exponentially growing behavior, in sharp
contrast to the wormhole solution from our previous work with the “dualistic” non-Abelian
BI theory. Also, for this particular value of the torsion, the wormhole tunneling interpretation
(in the sense of the Coleman’ s mechanism) is fulfilled. Now will need to see what happens
with (17) in this particular case under consideration. Well, (17) takes the following form

d∗T a + 1

2
εabc

(
fb ∧ ∗Tc − ∗Tb ∧ fc

) = −2λ ∗f a

(−2h + h2)(1 − h)dτ ∧ eb ∧ ec = −2λdτ ∧ eb ∧ ec

(57)
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∗T a ≡ h(−2h + h2)dτ ∧ ea

a2
(58)

∗f a = −h
dτ ∧ eb ∧ ec

a3
(59)

Then we arrived to the same equation for λ as (50) corroborating the self-consistency of the
procedure.

6 Discussion and Concluding Remarks

In the previous section we shown that the non-dualistic unified model proposed here have
deep differences with the dualistic non-Abelian Born-Infeld model of our early reference.
The first obvious difference come from a conceptual framework: the geometrical action will
provide, besides the spacetime structure, the matter-energy spin distribution. This fact is the
same basis of the unification: all the (apparently disconnected) theories and interactions of
the natural world appears naturally as a consequence of the intrinsic spacetime geometry.
The second point to have account here is about the Hosoya and Ogura ansatz: why the
identification of the isospin structure of the Yang-Mills field with the space frame lead a
similar physical situation that a non-dualistic unified theory with torsion? The answer is:
because at once such identification is implemented, a potential torsion is introduced and the
solution of the set of equations is the consistency between the definition of the torsion tensor
from the potential and the Cartan structure equations, namely

df = T + f α ∧ T βηαβ (60)

Dωα ≡ dωα + ωα
β ∧ ωβ = T α (61)

Rα
β = Dωα

β (62)

Here, however, f ≡ 1
2fαβωα ∧ ωβ, T ≡ Tαβγ ωα ∧ ωβ ∧ ωγ , T α ≡ 1

2T α
γβωγ ∧ ωβ and f α ≡

f a
μωμ. The set of (57)–(58) is clearly self-consistent. The explanation from a pure algebraic

and geometrical framework about the what happens with the underlying structure of the
manifold is given with details in the Appendix.

The third point is about the obtained solutions for the scale factor, the difference with our
previous work is precisely the particular form of the energy-momentum tensor in the NABI
case (in the UFT model presented here, there are not energy-momentum tensor, of course):
both solutions describe a wormhole-instanton but the final form of the differential equations
for the scale factor are different, then the scale factor here has an exponentially growing
behavior, in sharp contrast to the wormhole solution from our previous work with the “du-
alistic” non-Abelian BI theory. Also, for this particular value of the torsion, the wormhole
tunneling interpretation (in the sense of the Coleman’ s mechanism) is fulfilled.

The contact point between the compared models, however, are the dynamical equations
that are very similar although the existence of a “current term” in the UFT model (cf. (45))
that not appears in the NABI case. This fact was pointed out in an slightly different context
by N. Chernikov in [21].

The advantages of this nice model are clearly exposed in all this paper. The thinks to
improve are:

(i) the dependence on the dimensions trough the cosmological constant λ = |1 − d|
(ii) the lack of a manifest fermionic structure
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(iii) tetrad-field depending on the breaking of symmetry of the underlying topological ac-
tion, then the clear necessity of a reductive spacetime structure from the geometrical
point of view.
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Appendix: On Coordinates and (An)-Holonomy

There is a confusion in the literature over the use of the word “coordinates.” As a result, in the
older literature influenced by J.A. Schouten [13], the terms “holonomic coordinate system”
and “anholonomic system.” are used. And for an anholonomic system an “anholonomic
object” is employed. In the newer literature, exemplified by Bernard Schutz [18], the terms
“coordinate system” and “noncoordinate system” are used. In this case the “anholonomic
object” is replaced by the Lie algebra structure constant tensor. The key is to understand
the relationships between manifolds and the vector fields which live on them. Also we must
understand the difference between a commutative Lie group and a noncommutative Lie
group and the effect which this difference makes on the vector fields on the respective Lie
group manifolds. A coordinate system (= holonomic coordinate system) is characterized by
the partial derivative nature of the vector fields associated with the coordinates. In symbols
we can write that for coordinates, x1, x2, . . . , we have the vector field basis:

∂

∂x1

∂

∂x2
. . .

Because of the fact that a partial derivative is with respect to one variable, and leaves all
others fixed, the partial derivative operators are commutative. That is:

[
∂

∂x1
,

∂

∂x2

]
≡ ∂

∂x1

∂

∂x2
− ∂

∂x1

∂

∂x2
= 0

(the same for any xi, xj of course).
On any manifold, however, our starting point could be to consider the set of vector fields

which live on the manifold. These vector fields are characterized by the flow lines (or integral
curves) on the manifold. These flow lines can be used to describe coordinate systems on the
manifold. In this case we will describe the vector fields in terms of the parameters along the
flow lines. If we write these parameters with Greek letters μ, λ, etc. (to distinguish them
from coordinates xi ), then we can write these vector fields as:

V = d

dμ
W = d

dλ

Notice that these are total differential operators. These operators are appropriate in case
the operators do not commute. In this case the parameters, are not a parameterization ap-
propriate to a coordinate system (or are “anholonomic coordinates” in the terminology of
Schouten). As long as the vector fields V and W are independent, we can use them as a basis
for a grid of parameters μ and λ. And, assuming V and W do not commute, this grid will
not be a coordinate system (i.e. is “anholonomic”). Thus it is clear that the “anholonomic
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object” must be equivalent to the Lie bracket structure constants for a Lie algebra. For a Lie
algebra this is a tensor. How then is it possible for the “anholonomic object” of a geometry
to be coordinatized away? To understand this we need a simple example. Take the ordinary
Euclidean plane R2, with coordinates x and y. We can define the X and Y vector fields as:

X = ∂

∂x
Y = ∂

∂y

This simply means that we fill up the x direction in the plane with a congruence of
parallel flow lines for the vector field X, and similarly for the y direction. This is a perfectly
commutative basis for R2. However, we can also define polar “coordinates” (more correctly
parameters) r and θ on R2. In this case we can define the vector fields:

r̂ = cos θ X + sin θ Y

θ̂ = − sin θ X + cos θ Y

and the commutator of these vector fields is:

[
r̂ , θ̂

] = − θ̂

r

Thus r̂ and θ̂ are a noncoordinate basis (cf. [18], p. 44). It is clear, however, that we
can revert to a coordinate basis with X and Y as basis vector fields. So in this case the
commutator “anholonomic” object can be coordinatized away by changing to the x, y axes
as coordinates. This is possible because the underlying manifold R2 is a commutative Lie
group. Other examples of commutative Lie group manifolds are the n-dimensional vector
spaces Rn,Cn of real or complex numbers and the n-dimensional torus T n (i.e., a direct
product of n circles S1).

By now it should be clear that if the underlying manifold is a non-commutative Lie group,
then the (non-commutative) Lie algebra of left-invariant vector fields on the Lie group man-
ifold will provide a vector field basis (equivalent in dimensionality to that of the Lie group)
which is a noncoordinate basis (i.e., “anholonomic”). And in this case the commutator of
these vector fields is non-zero and thus the Lie algebra structure constant tensor is non-zero.
This tensor plays the role of the “anholonomic object” and there is no way to coordina-
tize away this tensor. Moreover, the connection provided by the left-invariant vector fields
provides an absolute parallelism structure on the Lie group manifold. (Note: absolute paral-
lelism provides parallel transport of tangent vectors independent of the path throughout the
Lie group manifold.)

This is connection is commonly called the Cartan connection because of his attempt to
describe electromagnetism by way of the torsion tensor T associated with this asymmetric
connection:

�α
βγ − �α

γβ = T α
βγ

This torsion tensor is equivalent to the Lie algebra structure constant tensor [12];

[
Xi,Xj

] = T k
ijZk

(where T is usually written as C: the structure constant or function, in the general case).
In summary, three cases must clearly be distinguished:



Int J Theor Phys (2010) 49: 1288–1301 1301

(i) The underlying manifold is a commutative Lie group. (for example, Rn,Cn,T n).
In this case, the Lie algebra (of left-invariant vector fields) is commutative and thus pro-
vides a coordinate basis (“holonomic coordinates”). However, it is possible to set up a non-
coordinate basis for vector fields, in which the basis fields do not commute. This sets up
an artificial non-zero commutator, which plays the role of an “anholonomic object.” But,
clearly, it can be coordinatized away by reverting to the commutative Lie algebra basis struc-
ture of left-invariant vector fields. (Note that on any manifold there is an infinite dimensional
basis of vector fields. However on a Lie group manifold, the action of the Lie group on itself
and its vector fields provides for a finite set of left-invariant basis fields, where the dimen-
sionality of this basis is that of the Lie group itself. This is the canonical basis for the Lie
algebra of the Lie group.)

(ii) The underlying manifold is a noncommutative Lie group (for example, SU(n),SO(n),

E6,E7,E8) In this case, the Lie algebra (of left-invariant vector fields) is noncommuta-
tive, and thus provides a noncoordinate basis (“anholonomic coordinates”). The Lie algebra
structure constant tensor Ck

ij plays many roles: “anholonomic object;” torsion tensor (rela-
tive to the Cartan connection); and (for particle physics) gauge group eigenvalues.

(iii) The underlying manifold is not a Lie group (for example, spheres Sn of any dimen-
sion n, except 1 and 3, since S1 = U(1), and S3 = SU(2) are Lie groups). This case may be
of interest to certain applications of mechanics. However, it should be noted that according
to the classification work of [19, 20], only Lie group manifolds are capable of carrying an
absolute parallelism connection. The one exception to this rule is the 7-sphere S7, which
gets its parallelization from the fact that it is the set of unit length vectors in the 8-d Cayley
algebra (the octonions).

Thus, if one is attempting to model electromagnetism via torsion in an absolute paral-
lelism geometry, one should consider only the noncommutative Lie group case. (The com-
mutative Lie groups carry no (Cartan type) torsion, of course).
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